

DS1000E, DS1000D Series Digital Oscilloscopes

DS1102E, DS1052E, DS1102D, DS1052D

May 2009 RIGOL Technologies, Inc.

Copyright

© 2009 RIGOL Technologies, Inc. All Rights Reserved.

Trademark Information

RIGOL is registered trademark of **RIGOL** Technologies, Inc.

Notices

RIGOL products are protected by patent law in and outside of P.R.C..

RIGOL Technologies, Inc. reserves the right to modify or change parts of or all the specifications and pricing policies at company's sole decision.

Information in this publication replaces all previously corresponding material.

RIGOL shall not be liable for losses caused by either incidental or consequential in connection with the furnishing, use or performance of this manual as well as any information contained.

Any part of this document is forbidden to copy or photocopy or rearrange without prior written approval of **RIGOL**.

Safety Notices

Review the following safety precautions carefully before operating the instrument to avoid any personal injuries or damages to the instrument and any product connected to it. To prevent potential hazards, do use the instrument specified by this user's guide only.

The instrument should be serviced by qualified personnel only.

To avoid instrument damage or personnel injury caused by misoperation, the instrument should be serviced by qualified personnel only.

Use Proper Power Cord.

Use the power cord designed for the instrument and authorized in your country only.

Connect and Disconnect Accessories.

Do not connect or disconnect probes or test leads while they are connected to a voltage source.

Ground The Instrument.

The oscilloscope is grounded through the grounding conductor of the power cord. To avoid electric shock the instrument grounding conductor(s) must be grounded properly. Before making connections to the input or output terminals of the instrument.

Connect The Probe.

The probes' ground terminals are at the same voltage level of the instrument ground. Do not connect the ground terminals to a high voltage.

Observe All Terminal Ratings.

To avoid fire or shock hazard, observe all ratings and marks on the instrument. Follow the user's guide for further ratings information before making connections to the instrument.

Do Not Operate Without Covers.

Do not operate the instrument with covers or panels removed.

Use Proper Fuse.

Use the fuse of the type, voltage and current ratings as specified for the instrument.

Avoid Circuit or Wire Exposure.

Do not touch exposed connections and components when power is on.

Do Not Operate With Suspected Failures.

If suspected damage occurs with the instrument, have it inspected by qualified service personnel before further operations.

Keep Well Ventilation.

Inadequately ventilated will cause the temperature rises or damages to the device. Please keep well ventilation and inspect the intake and fan regularly.

Do not Operate in Wet/Damp Conditions.

In order to avoid short circuit to the interior of the device or electric shock, please do not operate in a humid environment.

Do not Operate in an Explosive atmosphere.

In order to avoid damages to the device or personal injury, please operate far away from an explosive atmosphere.

Keep Product Surfaces Clean and Dry.

In order to prevent the performance of the device from influencing by dust or water in air, please keep the surface of device clean and dry.

The disturbance test of all the models meet the limit values of A in the standard of EN 61326: 1997+A1+A2+A3, but can't meet the limit values of B.

Measurement Category

The DS1000E, DS1000D series Digital Oscilloscope is intended to be used for measurements in Measurement Category I.

Measurement Category Definitions

Measurement Category I is for measurements performed on circuits not directly connected to MAINS. Examples are measurements on circuits not derived from MAINS, and specially protected (internal) MAINS derived circuits. In the latter case, transient stresses are variable; for that reason, the transient withstand capability of the equipment is made known to the user.

WARNING

IEC Measurement Category I, The input terminals may be connected to circuit terminal in IEC Category I installations for voltages up to 300 VAC. To avoid the danger of electric shock, do not connect the inputs to circuit's voltages above 300 VAC. Transient overvoltage is also present on circuits that are isolated from mains. The DS1000E, DS1000D series Digital Oscilloscopes is designed to safely withstand occasional transient overvoltage up to 1000Vpk. Do not use this equipment to measure circuits where transient overvoltage could exceed this level.

Safety Terms and Symbols

Terms in this Guide. These terms may appear in this manual:

WARNING

Warning statements indicate the conditions or practices that could result in injury or loss of life.

CAUTION

Caution statements indicate the conditions or practices that could result in damage to this product or other property.

Terms on the Product. These terms may appear on the product:

DANGER indicates an injury or hazard that may immediately happen.WARNING indicates a potential injury or hazard that may happen.CAUTION indicates that a potential damage to the instrument or other property might occur.

Symbols on the Product. These symbols may appear on the product:

Hazardous Voltage

Refer to Instructions

Protective Earth Terminal

Chassis Ground

Test Ground

Document Overview

Chapter 1 Specifications

List the specifications and general specifications of DS1000E, DS1000D series.

Chapter 2 Prepare for Use

Introduce the preparatory work should be done before using the oscilloscope.

Chapter 3 Performance Test

Introduce how to execute the performance test to understand current performance status of the oscilloscope.

Chapter 4 Calibration

Introduce how to calibrate the oscilloscope.

Chapter 5 Disassembly and Assembly

Introduce how to disassemble and assemble the oscilloscope to understand its structure.

Chapter 6 Troubleshooting

List the troubles may appear during measuring and the corresponding solutions.

Chapter 7 Replaceable Parts

List the replaceable parts for user's repair or exchange.

Chapter 8 Service & Support

Provide the service and support information.

Contents

Chapter 8	Service & Support8-	1
Chapter 7	Replaceable Parts7-	1
Chapter 6	Troubleshooting6-	
Notices Structur Disasser Disasser Disasser Disasser Disasser	5- e Chart	2 3 4 5 6 8 9
-	Disassembly and Assembly5-	
Log Specifica	ic Analyzer Interface Test (Only for DS1000D Series)	9 1
USE USE RS-	es Test	2 4 6
Chapter 3	Performance Test3-	1
Power-C Connect Probe Co Digital P	Inspection 2- On Inspection 2- the Probe 2- ompensation 2- Probe (Only for DS1000D Series) 2- a Waveform Automatically 2-	3 4 5 7
Chapter 2	Prepare for Use2-	1
	ations	
Chapter 1	Specifications1-	1
Safety T Docume Contents Figures.	lotices erms and Symbols Int Overviews VI	V V /I []

Warranty	
Index	

Figures

Figure 2-1 Connect the power cord	2-3
Figure 2-2 Power-on inspection	
Figure 2-3 Connect probe to oscilloscope	
Figure 2-4 Connect probe to circuit	
Figure 2-5 Set the probe attenuation quotient and switch	
Figure 2-6 Connect the probe compensator	
Figure 2-7 Waveform compensation	
Figure 2-8 Connect the digital probes to oscilloscope	
Figure 2-9 Test clip of digital probe	
Figure 2-10 Attach the clip to testing point	2-8
Figure 2-11 Connecting to the ground	
Figure 3-1 Connect the U disk	3-2
Figure 3-2 Successful prompt of USB interface connection	3-2
Figure 3-3 USB Device interface connection	
Figure 3-4 Select USB interface	3-4
Figure 3-5 Fail prompt of USB interface connection	3-5
Figure 3-6 RS-232 interface connection	3-6
Figure 3-7 Select RS-232 interface	3-6
Figure 3-8 RS-232 interface setting	
Figure 3-9 Fail prompt of RS-232 interface connection	3-7
Figure 3-10 P/F interface connection	3-8
Figure 3-11 DS1000D LA interface connection	3-9
Figure 3-12 Setting interface	-10
Figure 3-13 Edge trigger of digital channel 3	-10
Figure 3-14 Connect the testing device 3	-11
Figure 4-1 Self-Calibration interface	
Figure 4-2 Finish Self-Calibration	
Figure 5-1 Stucture chart	
Figure 5-2 Disassemble and assemble the cover	
Figure 5-3 Disassemble and assemble the upper and rear covers	
Figure 5-4 Disassemble and assemble the power board and the fan	
Figure 5-5 Disassemble and assemble the panel	
Figure 5-6 Disassemble and assemble LCD and the keyboard	
Figure 5-7 Disassemble and assemble the mainboard 5	
Figure 7-1 DS1000E, DS1000D Exploded View	7-1

Tables

Table 2-1 The auto items	2-9
Table 3-1 Pass/Fail setting items	
Table 3-2 Testing specifications and the ranges	3-11
Table 7-1 Replaceable parts list	7-1

Chapter 1 Specifications

All specifications apply to DS1000E, DS1000D series Oscilloscopes unless noted otherwise. To meet these specifications, two conditions must first be met:

- The instrument must have been operating continuously for thirty minutes within the specified operating temperature.
- Do perform the "Self Cal" operation, accessible through the Utility menu, if the operating temperature changes by more than 5°C.

NOTE: All specifications are guaranteed unless noted "typical".

Specifications

Acquisition						
Sampling Modes	Real-Time			Equivalent		
Sampling Rate	1652/6 200	MC2/	[1]	DS1	102X	DS1052X
	1030/5, 200	1GSa/s, 200MSa/s ^[1]		25G	Sa/s	10GSa/s
Averages			•			aneously, N is
	selectable f	rom 2	, 4, 8, 16, 3	32, 64	, 128 and 2	
Inputs						
Input Coupling			AC, GND			
Input Impedance			±2% [:] ±3pF			
Probe Attenuation F	actors	1X, 5	5X, 10X, 50	X, 100)X, 500X,10	X00X
NA - T - 1.1/1		400\	\prime (DC+AC I	Peak,	$1M\Omega$ input	impedance)
Maximum Input Vol	tage	40V	(DC+AC Pe	ak) ^[1]		
Time delay betwe (typical)	en channel	500p)S			
Horizontal						
Sample Rate	Real-Time: 13.65Sa/s-1GSa/s					
Range	Equivalent:	Equivalent: 13.65Sa/s-25GSa/s				
Waveform interpolation	Sin(x)/x					
	Channel Moo	de	Sample ra	ate	Record Length (normal)	Record Length (long record)
Descud Lawath	Single channel		1GSa/s		16kpts	N.A.
Record Length	Single chanr	nel	500MSa/s Or lower	5	16kpts	1Mpts
	Double chan	nel	500MSa/s Or lower	5	8kpts	N.A.
	Double channel		250MSa/s Or lower	5	8kpts	512kpts
Scan speed Range (Sec/div)	2ns/div~50s/div, DS1102X 5ns/div~50s/div, DS1052X 1-2-5 Sequence					
Sample Rate and Delay Time Accuracy	±50ppm (over any 1ms time interval)					
Delta Time Measurement Accuracy (Full Bandwidth)	elta Time leasurement ccuracy Single-shot: ±(1 sample interval + 50ppm × reading + 0.6 >16 averages: ±(1sample interval + 50ppm × reading +			- /		
Vertical						

A/D converter	8-bit resolutio	on, each channel samples simultaneously ^[2]		
Volts/div Range	2mV/div~10V/div at input BNC			
Maximum Input		el maximum input voltage		
		rms, 1000Vpk; instantaneous voltage 1000Vpk		
	CAT II 100Vr			
		CAT II 300Vrms		
		CAT II 300Vrms		
		CAT II 300Vrms		
Offset Range		/div~10V/div),±2V(2mV/div~245mV/div)		
Analog Bandwidth		102D,DS1102E)		
/	· ·	152D, DS1052E)		
Single-shot		102D, DS1102E)		
Bandwidth		152D, DS1052E)		
Selectable Analog				
Bandwidth Limit	20MHz			
(typical)	201 11 12			
Lower Frequency	_			
Limit (AC –3dB)	≤5Hz (at inpu	it BNC)		
Rise Time at BNC,	<3.5ns, <7ns			
typical		50MHz) respectively		
Dynamic range	±5div			
DC Gain Accuracy	2mV/div-5mV/div:			
	±4% (Normal or Average acquisition mode)			
	10mV/div-10V/div:			
	±3% (Normal or Average acquisition mode)			
DC Measurement	Average of \geq 16 Waveforms with vertical position at zero:			
Accuracy, Average	±(DC Gain Accuracy×reading+0.1div+1mV)			
Acquisition Mode	Average of ≥ 16 Waveforms with vertical position not at zero:			
	±[DC Gain Accuracy×(reading+vertical position)+(1% of			
	vertical position) + 0.2div] Add 2mV for settings from 2mV/div to 245 mV/div			
	Add 50mV for settings from >250mV/div to 10V/div			
Delta Volts	Delta Volts between any two averages of 16 waveforms			
Measurement	acquired under same setup and ambient			
Accuracy (Average		(DC Gain Accuracy×reading + 0.05 div)		
Acquisition Mode)		(DC Gaill Accuracy ~ reading + 0.05 div)		
Trigger				
Trigger Sensitivity	0.1div~1	Odiv (adjustable)		
Trigger Level Range		±6 divisions from center of screen		
	EXT	±0 divisions nom center of screen		
Trigger Level Accurs		$\pm 1.2V$ $\pm (0.3 \text{div} \times \text{V/div})(\pm 4 \text{ divisions from center of})$		
Trigger Level Accura (typical) applicable		\pm (0.500 × 0/00)(\pm 4 divisions from center of screen)		
the signal of rising a		\pm (6% of setting + 200 mV)		
falling time ≥20ns	nd EXT	$\pm (0\% \text{ OI Setting} + 200 \text{ IIIV})$		

Trigger Offset		Normal mode: pre-trigger (storage depth/ 2*sampling rate), delayed trigger 1s				
		Slow S	can mode: pre-trigger 6div, delayed trigger 6div			
Trigger Holdoff	range	500ns [,]	~1.5s			
Set Level to 5	50%					
(Typical)		Input s	signal frequency ≥50Hz			
Edge Trigger						
Edge trigger slo	ope Ri	sing, Fall	ing, Rising + Falling			
Pulse Trigger	•					
Trigger condition	on (>	>, <, =)) Positive pulse, ($>$, $<$, =) negative pulse			
Pulse Width rar	nge 20	ns ~10s				
Video Trigger	•					
Video standaro			andard NTSC, PAL and SECAM broadcast systems.			
line frequency		ne numb	er range: 1~525 (NTSC) and 1~625 (PAL/SECAM)			
Slope Trigger						
Trigger condition	-	>, <, =) Positive slope, (>, <, =) negative slope				
Time setting)ns~10s				
Alternate Trig						
Trigger on CH1		ge, Pulse, Video, Slope				
Trigger on CH2		lge, Puls	e, Video, Slope			
Pattern Trigg						
Trigger mode)∼D15 se	elect H, L, X, 🗲 , 🔁			
Duration Trig						
Trigger Type			elect H, L, X			
		, <, =				
		Ins~10s				
Measurement						
Mar		I	Voltage difference between cursors (ΔV)			
Cursor			Time difference between cursors (ΔT)			
			Reciprocal of ΔT in Hertz (1/ ΔT)			
Track		Voltage value for Y-axis waveform				
A + -		Time value for X-axis waveform				
	Auto	(\ /	Cursors are visible for Automatic Measurement			
Auto Measure			max, Vmin, Vtop, Vbase, Vavg, Vrms, Overshoot,			
			, Period, Rise Time, Fall Time, +Width, -Width,)			
Remarks:	TOULY	Duty, L	Delay1→2f, Delay1→2f			

Remarks:

[1] For DS1000D series;

[2] When sampling is 1GSa/s, only single channel can be used.

General Specifications

Display					
Display Type	5.7 in. (145 mm) diagonal TFT Liquid Crystal Display				
Display Resolution	320 horizontal ×RGB×234 v	320 horizontal ×RGB×234 vertical pixels			
Display Color	64k color				
Display Contrast (typical)	150:1				
Backlight	300 nit				
Brightness(typical)					
Probe Compensator Out					
Output Voltage(typical)	Approximately 3Vpp (peak to	o peak value)			
Frequency(typical)	1kHz				
Power					
Supply Voltage	100 ~ 240 VAC _{RMS} , 45~440H	iz, CAT II			
Power Consumption	Less than 50W				
Fuse	2A, T rating, 250 V				
Environmental					
Ambient Temperature	ent Temperature Operating 10° C ~ 40° C				
	Non-operating -20℃~ +60℃				
Cooling Method	Fan force air flow				
Humidity	Humidity $+35^{\circ}$ C or below: $\leq 90\%$ relative humidity				
	+35℃~ +40℃: ≤60% relative humidity				
Altitude	Altitude Operating 3,000 m or below				
Non-operating 15,000 m or below					
Mechanical					
Size	Width	303mm			
	Height	154mm			
	Depth	133 mm			
Heavy	Without package	2.3 kg			
	Packaged	3.5 kg			
IP Protection					
IP2X					
Calibration Interval					
The recommended calibrat	ion interval is one year				

Chapter 2 Prepare for Use

This chapter contains the following topics:

- General Inspection
- Power-On Inspection
- Connect the Probe
- Probe Compensation
- Digital Probe (Only for DS1000D Series)
- Display a Waveform Automatically

General Inspection

When you get a new DS1000E, DS1000D series oscilloscope, please inspect the instrument according to the following steps:

1. Inspect the shipping container for damage.

Keep a damaged shipping container and cushioning material until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically.

2. Inspect the instrument.

In case there is any mechanical damage or defect, or the instrument does not operate properly or fails performance tests, please notify the **RIGOL** Sales Representative.

If the shipping container is damaged, or the cushioning materials show signs of stress, please notify the carrier as well as the **RIGOL** sales office. Keep the shipping materials for the carrier's inspection. **RIGOL** offices will arrange for repair or replacement at **RIGOL**'s option without waiting for claim settlement.

3. Check the accessories.

Accessories supplied with the instrument are listed below. If the contents are incomplete or damaged, please notify the **RIGOL** Sales Representative.

Standard Accessories:

- Probe×2 (1.5m), (1:1 or 10:1 adjustable) Passive Probes
 The passive probes have a 6MHz bandwidth with a rating of 150V CAT II when the switch is in the 1X position, and a Full oscilloscope bandwidth with a rating of 300 V CAT II when the switch is in the 10X position.
- A Power Cord that fits the standard of destination country
- An USB Cable
- A Logic Cable (only for DS1000D series)
- An active logic head (only for DS1000D series)
- 20 Logic Testing Nips (only for DS1000D series)
- 20 Logic Testing Leads (only for DS1000D series)
- A CD-ROM (including "User's Guide" and Application Software)
- A Quick Guide

Power-On Inspection

Generally, normal operating voltage and frequency for DS1000E, DS1000D series digital oscilloscope are $100-240V_{\text{RMS}}$ and 45-440Hz respectively. Please connect one terminal of the power cord to the socket in left side of the oscilloscope and the other to the AC power source.

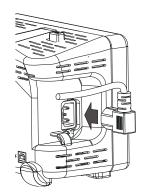


Figure 2-1 Connect the power cord

Press the power button on top of the oscilloscope, some keys on the front panel will light for about 2 seconds until the normal display appears. And then you can operate the oscilloscope.

WARNING

To avoid the electric shock, make sure the oscilloscope is under good grounding before connecting AC power.

After power-on, the oscilloscope performs all the self-testing automatically. Then, press <u>Storage</u> and select <u>Storage</u> to recall the <u>Factory</u> settings after passing test (the screen will appear).

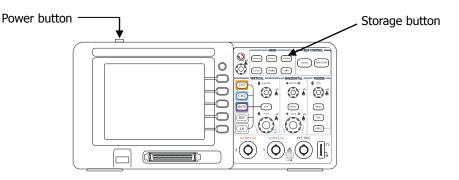


Figure 2-2 Power-on inspection

Connect the Probe

DS1000E series is a type of digital oscilloscope with dual channel inputs and one external trigger input. While, DS1000D series is a type with dual channel input, one external trigger input and sixteen channel digital inputs.

Please take the following steps to connect the probe:

1. Attach BNC connector of the probe to the channel input or external trigger interfaces, insert it vertically until it latches into places. Then circumvolve the BNC connector clockwise to get a firm connection.

Figure 2-3 Connect probe to oscilloscope

2. Connect the other end of probe to circuit under test.

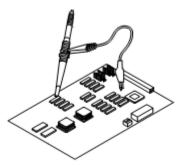


Figure 2-4 Connect probe to circuit

3. Disconnect the circuit after testing, and then circumvolve the BNC connector of probe anticlockwise, and pull it out of the interface vertically.

WARNING

When use 10:1 attenuation probe, don't input a signal with higher than maximum input voltage.

Probe Compensation

You are suggested to compensate probe before first using so as to match its characteristics with oscilloscope. Measurement error may be generated without compensation or because of deviation compensation. To compensate the probe, follow the steps below.

1. Set both the attenuation switch of the probe and the probe scale in the menu to 10X.

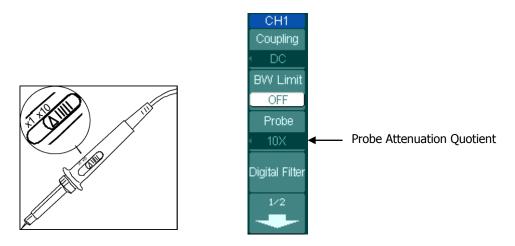


Figure 2-5 Set the probe attenuation quotient and switch

2. Connect the probe to CH1. And attach both the probe tip and ground lead to the connector of probe compensator.

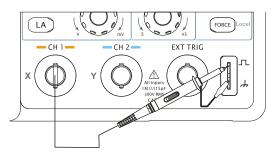


Figure 2-6 Connect the probe compensator

3. Open CH1 and press AUTO button after a few seconds, a square wave will be displayed (1 kHz, approximately 3 V peak- to- peak). Check if the compensation is

correct in accordance with the shape of waveform.

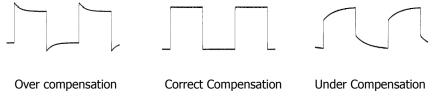


Figure 2-7 Waveform compensation

- **4.** If necessary, use a non-metallic screwdriver to adjust the variable capacitor of the probe until a "Correct Compensation" wave displayed on the screen.
- **5.** Continue in the same way to check CH2.

WARNING

To avoid electric shock while using the probe, be sure the perfection of the insulated cable, and do not touch the metallic portions of the probe head while it is connected with a high-voltage power supply.

Digital Probe (Only for DS1000D Series)

DS1000D series provide sixteen digital channels. Take the steps below to connect instrument and test points by digital probes:

- **1.** Switch off power supply of the device under test if necessary to avoid short circuit. Since no voltage is applied to the leads at this step, you may keep the oscilloscope on.
- **2.** Connect one terminal of the flat cable FC1868 to the Logic Analyzer Input; connect the other end to Logic Head LH1116. An identifier is located on each end of the flat cable; it can only be connected in one way. It is unnecessary to switch off power supply of your oscilloscope when connecting the cable.

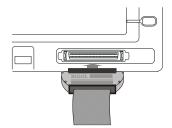


Figure 2-8 Connect the digital probes to oscilloscope

CAUTION

Use only FC1868, LH1116, TC1100 and LC1150 made by **RIGOL** for specified DS1000D series.

3. Connect a test clip to one lead wire; make sure it's connection good.

Figure 2-9 Test clip of digital probe

4. Test your device with the clip.

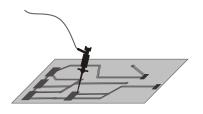


Figure 2-10 Attach the clip to testing point

5. Connect the test clip to the ground.

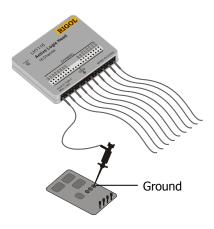


Figure 2-11 Connect to the ground

Display a Waveform Automatically

DS1000E, DS1000D series digital oscilloscopes have an automatic feature to display the input signal best-fit. The oscilloscope enables to automatically set up VERTICAL, HORIZONTAL and TRIGGER parameters for the input signal under display. The input signal should be 50Hz or higher of frequency and the duty cycle of which should greater than 1%.

1. Operation steps

- Connect a signal to input channel.
- Press AUTO and adjust parameters manually to get the best display if necessary.

2. Auto settings

Functions	Settings		
Display format	Y-T		
Acquire mode	Normal		
Vertical coupling	Adjust to AC or DC according to the signal.		
Vertical "V/div"	Adjust to right position		
Volts/Div	Coarse		
Bandwidth limit	Full		
Signal Invert	OFF		
Horizontal position	Center		
Horizontal "S/div"	Adjust to right position		
Trigger type	Edge		
Trigger source	Find the channel with input signal automatically.		
Trigger coupling	DC		
Trigger voltage	Midpoint setting		
Trigger mode	Auto		
OSITION knob	Trigger offset		

Table 2-1 The auto items

Chapter 3 Performance Test

This chapter contains the following topics:

- Interfaces Test
 USB Host Interface Test
 USB Device Interface Test
 RS-232 Interface Test
 P/F Interface Test
 Logic Analyzer Interface Test (Only for DS1000D Series)
- Specifications Test

Interfaces Test

USB Host Interface Test

Purpose:

Test if the **USB Host** interface works normally through U disc.

Tools:

- A set of DS1000E, DS1000D series digital oscilloscope
- An U disk

Steps:

1. Insert the U disk into the USB Host interface on the front panel of the oscilloscope.

Figure 3-1 Connect the U disk

2. Wait until a prompt "USB device install success" appeared on the screen, which indicates the USB Host interface works normally, otherwise, you need to check or repair this interface.

Figure 3-2 Successful prompt of USB interface connection

- **3.** If an update program about the oscilloscope available in the U disc is detected, a prompt will appeared to ask you whether to update or not; if select OK, the corresponding update process will be shown on the screen.
- **4.** Press Storage \rightarrow External to copy or delete the information in U disc.
- **5.** Remove the U disc and a corresponding prompt "USB device removed" will appear.

USB Device Interface Test

Purpose:

Test if the **USB Device** interface works normally through Ultrascope for DS1000E, DS1000D series.

Tools:

- A set of DS1000E, DS1000D series digital oscilloscope
- A PC with USB interface
- A standard USB cable (Type AB)
- Ultrascope for DS1000E, DS1000D series

Steps:

- **1.** Install the Ultrascope for DS1000E, DS1000D series software on the PC.
- **2.** Connect the oscilloscope with PC using an USB cable, and install the driver program step by step following the prompt.

Figure 3-3 USB Device interface connection

3. Run Ultrascope for DS1000E, DS1000D series, then click **Tools**→**Options** and select **USB** as the current **IO**.

Options	
General Refresh Communication Setting	
ID Selection USB C RS232	
Startup Dption Startup Hardware Checki Recent Data Sheet File Load Recent Control File Load	
OK	Cancel

Figure 3-4 Select USB interface

 Click Tools → Connect to Oscilloscope; If successful, the corresponding indicator at the upper right corner of the software will be changed from red to blue; if failed, a prompting message will be appeared as below.

Figure 3-5 Fail to connection

Hint

For the newest version of this software please go to <u>www.rigolna.com</u> download.

RS-232 Interface Test

Purpose:

Test if **RS-232** interface works normally through Ultrascope for DS1000E, DS1000D series.

Tools:

- A set of DS1000E, DS1000D series digital oscilloscope
- A PC with RS-232 interface
- A standard RS-232 cable
- Ultrascope for DS1000E, DS1000D series

Steps:

- 1. Install the Ultrascope for DS1000E, DS1000D series software on the PC.
- **2.** Connect the oscilloscope with PC using an RS-232 cable.



Figure 3-6 RS-232 interface connection

3. Run Ultrascope for DS1000E, DS1000D Series, then click **Tools**→**Options** and select **RS-232** as the current **IO**.

Options	
General Refresh Communication Setting	
IO Selection	
Startup Option	
Recent Control File Load	
ОК	Cancel

Figure 3-7 Select RS-232 interface

4. Click **Communication Setting** and setup the communication interface under using and the baud rate.

Options General Re	fresh Communication	Setting		
	ISB Device	0	T	
F	IS232 Setting RS232 Port	COM1	•	
	Baud Rate	9600	•	

Figure 3-8 RS-232 interface setting

- **5.** Press Utility \rightarrow I/O Setting and set the baud rate as the same value in Ultrascope.
- **6.** Click **Tools** → **Connect to Oscilloscope**; If successful, the corresponding reminder light at the upper right corner of the software will be changed from red to blue; otherwise, a prompting message will be appeared as below.

RS232	Init 🛛 🔀
♪	Invalid port number
	()

Figure 3-9 Fail prompt of RS-232 interface connection

P/F Interface Test

Purpose:

Test if **P/F** interface work normally through RS5101 module.

Tools:

- A set of DS1000E, DS1000D series digital oscilloscope
- A BNC cable
- A RD5101 module

Steps:

- 1. Power on the oscilloscope and RD5101 respectively.
- **2.** Connect P/F interface on DS1000E, DS1000D with [Pass/Fail out] interface on RD5101 by BNC cable.

Figure 3-10 P/F interface connection

- **3.** Turn on the oscilloscope, press Storage → Storage → Factory to recall the factory settings.
- Press Utility → Pass/fail to enter the setting interface of Pass/Fail, see the table below

Table 5-1 Pass/Fail Setting Items		
Items	Setting	
Enable Test	ON	
Source	CH1	
Msg display	ON	
Output	Fail	
Stop on Output	OFF	

Table 3-1 Pass/Fail setting items

- 5. After setting, press Operate to start Pass/Fail test.
- **6.** Observe the reminder light of PASS/FAIL INDICATO of RRD5101; if the reminder light twinkles at a frequency, which indicates that the interface works normally, if no response to the lighter, errors might happened to the interface.

Logic Analyzer Interface Test (Only for DS1000D Series)

Purpose:

Test if the Logic Analyzer (hereinafter referred to as LA) interface works normally through the logic signal output module (DG-POD-A) of DG3000.

Tools:

- A set of DS1000D series digital oscilloscope
- A set of DG3000 Function/ Arbitrary waveform Generator
- An active logic head
- Two logic cables
- 17 logic testing leads
- A DG-POD-A module

Steps:

- **1.** Connect LA interface on DS1000D with the active logic head by logic cable.
- **2.** Connect "DIGITAL OUTPUT" interface on the rear panel of DG3000 with DG-POD-A module by logic cable.
- **3.** Connect the active logic head with DG-POD-A module by logic testing leads, so as to realize DS1000D and DG3000 connection.

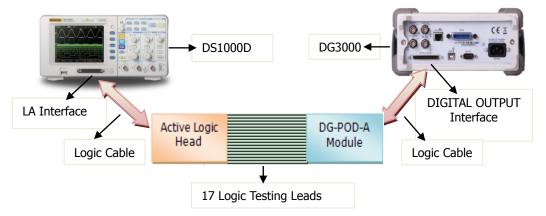


Figure 3-11 DS1000D LA interface connection

- 4. Power on DS1000D and DG3000 respectively.
- 5. Turn on DG3000 and press Utility → Output Setup → Digit-Modu → Power on to enable the digital module power on.
- **6.** Press Arb→Edit Digital W, select Protocol→PO, Code Pat→ 32PRBS and adjust Output Length as 16 Byte as follows, then press Arb button to output digital signal.

RIGOL IPO 0:3.3V A:3.3 V Loaded	DIGIT
H→H 1.000,0kbps	Protocol
	Protocol Setting
D D	Code Pat 32PRBS
Pat: 32PRBS Output: 16 Byte MaskChannel: None TriState: None	Data Edit
Phase(C0): 0° TrigInt: 10 ms	1/2

Figure 3-12 Setting interface

- 7. Press A button on the oscilloscope, select D7-D0 and D15-D8 to open all the logic channels.
- **8.** Select EDGE mode under the trigger menu and select any one source among Do to D15, if obtain the stable interface as follows, the LA module will be proved works normally.

RIGOL	T' D 💷 D15	DØ	£ 🕕 -600mV
015			
D14			
012			
D11 U D10 U			
09			
07			
D6 1			
04 🗍			
02 <u>Л</u>			
D1 D0 Л			
		Time 5.000n	s 0 +0.0000s

Figure 3-13 Edge trigger of digital channel

Specifications Test

Purpose:

Test if all the specifications are in the specified range.

Requirement:

Verify whether the oscilloscope is qualified through FLUKE calibration instrument and relative softwares.

Tools:

- A set of DS1000E, DS1000D series oscilloscope
- A set of FLUKE 9500B calibration instrument for oscilloscope and accessories to it
- Auxiliary testing softwares
- A computer with GPIB and USB interfaces
- A GPIB cable
- A standard USB cable (Type AB)
- Three BNC terminals with 50Ω of resistance

Steps:

1. Connect the FLUKE oscilloscope with PC using a GPIB cable.

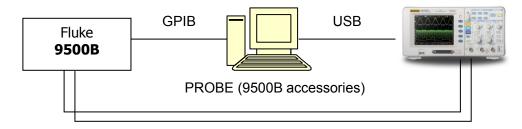


Figure 3-14 Connect the testing device

- **2.** Connect the oscilloscope with PC using an USB cable.
- **3.** Use the testing software to test the specifications listed in the table below. Check if all the specifications are in the specified range.

Testing item	Returned value	Errors
Noise	Vpp: CH1, CH2	0.0~0.65div
Input impedance	Input impedance: CH1:100mV 500mV CH2:100mV 500mV	1MΩ±2%, in parallel with 15pF±3pF 1MΩ±2%, in parallel with 15pF±3pF

		1MΩ±2%, in parallel with 15pF±3pF 1MΩ±2%, in parallel with 15pF±3pF
Voltage accuracy	Relative error between the average and the actual: CH1, CH2 2mV, 5mV scale >5mV scale	±4% ±3%
DC linearity	DC voltage error array: CH1, CH2 200mV scale 5V scale	-2.60~2.60(mV) -2.60~2.60(mV)
DC offset	Relative error of the voltage: CH1, CH2, 5V scale	0~6%
Horizontal time Accuracy	delta-t error	-5.00e-9~5.00e-9(s)
Trigger sensitivity	Trigger sensitivity error: 10MHz Full bandwidth	$0.1{\sim}1.0$ div $0.1{\sim}1.5$ div
Timebase linearity	Period error	0.0~5.0e-10(s)
Channel delay	Delay: CH1, CH2	500ps
Trigger delay	Delay: CH1, CH2	500ps

Chapter 4 Calibration

The oscilloscope can achieve the optimum state fleetly by performing the calibration program and get accurate measurement. You can execute the calibration at any time. But when the operating temperature changes up to or more than 5° C, you must perform this programme.

NOTE:

The oscilloscope must have been working or warm-up **at least 30-minutes** before running self-calibration to get best accuracy.

Steps:

- 1. Disconnect any probes or cables from all channel inputs, otherwise failure or damage to the oscilloscope may occur.
- **2.** Press Utility \rightarrow Self-Cal, enter the Self-Calibration interface.

Figure 4-1 Self-Calibration interface

- **3.** Press <u>RUN/STOP</u> to start the Self-Calibration, the oscilloscope will calibrate the vertical system (CH1, CH2 and Ext), horizontal system and the trigger system automatically to guarantee the specifications in different environment.
- **4.** The screen will give a message of "Calibration finished" after finish the calibration and you can press RUN/STOP to exit.

Figure 4-2 Finish Self-Calibration

Generally speaking, the Self-Calibration will take about 5-6 minutes, if the calibration does not pass after this time, or the progress bar stop at one of the calibration item, there may be a trouble to the instrument. To resolve the trouble, restart the instrument and perform the Self-Calibration again, if the problem still remains, contact **RIGOL** for help.

Chapter 5 Disassembly and Assembly

This chapter includes the following topics:

- Notices
- Structure Chart
- Disassemble and Assemble the Cover
- Disassemble and Assemble the Upper and Rear Cover
- Disassemble and Assemble the Power Board and the Fan
- Disassemble and Assemble the Panel
- Disassemble and Assemble LCD and the Keyboard
- Disassemble and Assemble the Mainboard

Notices

Notices:

- Don't disassemble the product except the work needed.
- Disassemble only can be done by qualified person.
- Cut the power before disassembling.
- Take ESD glove under disassembling.
- Use proper tools and follow the disassembly sequence.
- Prevent metallic parts from transfiguration and avoid being scratched when disassembling.

Required tools:

- TORX drivers (T6, T10, T20)
- BNC sleeve

WARNING

Before disassembling, please make sure the power has been cut off. The operator should be trained or had related qualification.

Structure Chart

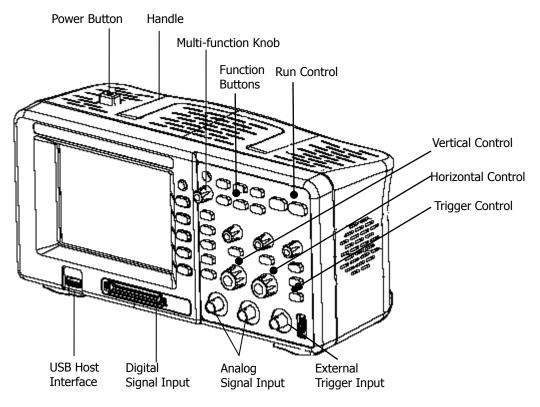


Figure 5-1 Structure chart

Disassemble and Assemble the Cover

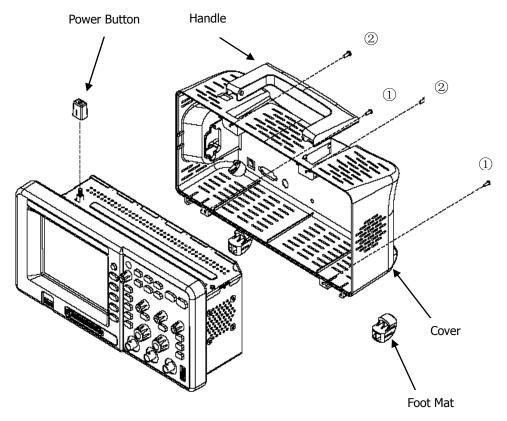


Figure 5-2 Disassemble and assemble the cover

Parts Explanations:

- ① Bolts on the bottom of the cover (M3*8 Pan head Torx recess Drilling tapping screws): 2
- 2 Bolts at the groove of the handle (M3*8 Pan head Torx recess machine screws): 2

Disassemble steps:

- 1. Backout both the two bolts \bigcirc and \bigcirc using a TORX driver (T10);
- 2. Jiggle the power button and pull the cap out from it;
- 3. Remove the cover at the power socket forcibly.

Assemble steps:

About assembly, please operate as reverse orders, the same below.

Disassemble and Assemble the Upper and Rear Covers

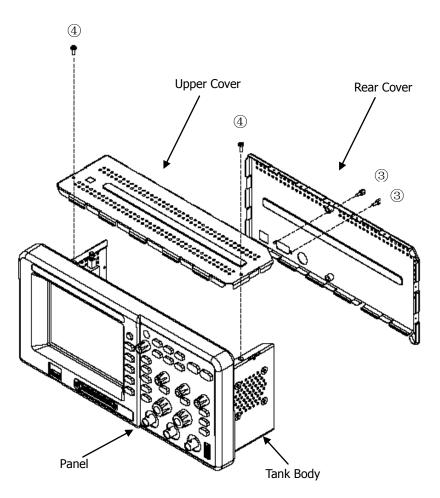


Figure 5-3 Disassemble and assemble the upper and rear covers

Parts Explanations:

- ③ Bolts at the interface of RS-232 (DB9 interface bolts): 2
- ④ Bolts at the upper cover (M3*6 Pan head Torx recess composite machine screws):
 2

Disassemble steps:

- 1. Backout the two bolts ③ and remove the rear cover;
- 2. Backout the two bolts ④ using a TORX driver (T10); Then, remove the upper cover.

Disassemble and Assemble the Power Board and the Fan

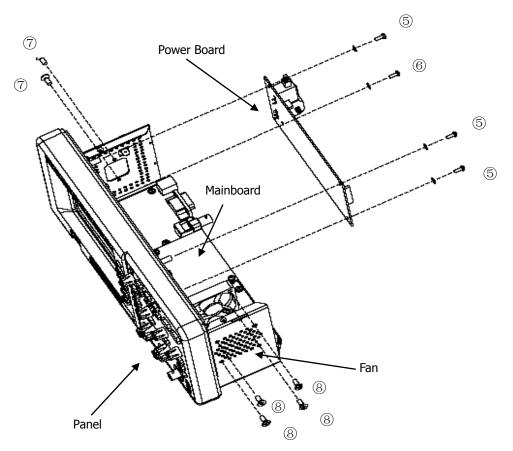


Figure 5-4 Disassemble and assemble the power board and the fan

Parts Explanations:

- (5) Small bolts for fixing the power board (M3*6 Pan head Torx recess composite machine screws): 3
- Big bolts for fixing the power board (M4*8 Pan head Torx recess machine screws):
 1
- Bolts (M3*8 Pan head Torx recess Drilling tapping screws) and nuts (M3 hexagon nut with locking plate) for linking up the power board and shell: 2 pairs
- 8 Bolts for fixing the fan (M5*8 Pan head Torx recess machine screws): 4

Disassemble steps:

1. Pull out the power line 12pin from the J2 interface of mainboard and the power

line 2pin for the screen as well as the power ground wire;

- 2. Back out both the three bolts (5) and the bolt (6) on the power board separately using TORX driver T10 and T20;
- 3. Backout the two bolts and nuts ⑦ for linking up the power board and shell using a TORX driver (T10) and remove the power board;
- 4. Pull out the line 12pin power to fan from the J5 interface of mainboard (locates under the fan), and then backout the four bolts (8) using a TORX driver (T10) to remove the fan.

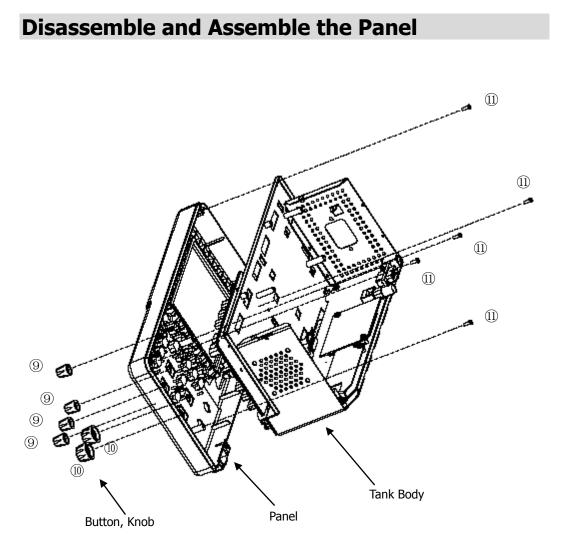


Figure 5-5 Disassemble and assemble the panel

Parts Explanations:

- 9 Small knobs: 4
- 10 Big knobs: 2

1 Bolts for fixing board on the tank body (M3*8 Pan head Torx recess Drilling tapping screws): 5

Disassemble steps:

- 1. Pull out the four small knobs (9) and two big knobs (10) (note do not damage the board by something hard)
- 2. Backout the five bolts from the tank body using a TORX driver (T10) to remove the board.

Disassemble and Assemble LCD and the Keyboard

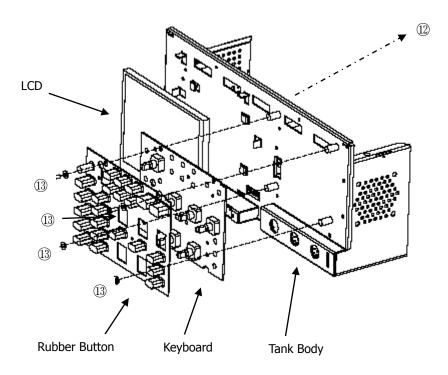


Figure 5-6 Disassemble and assemble LCD and the keyboard

Parts Explanations:

12 Bolts for the screen ground wire (M2*4 Pan head Torx recess machine screws): 1
 13 Bolts fixed on the keypad board (M3*6 Flush head Torx recess machine screws): 4

Disassemble steps:

- 1. Pull out the LCD wire from the J603 interface of the mainboard;
- 2. Backout the one bolt of the screen ground wire using a TORX driver (T6);
- 3. Take out the LCD screen gently (Be careful the screen cable and ground wire);
- 4. Backout the keypad board cable from the J604 interface of the mainboard;
- 5. Backout the four bolts (3) from the keypad board using a TORX driver (T10); the moment of force is 6 NM;
- 6. Take out the keypad board gently (pay attention to the wire).

(16)LA Board Cooling Plate (17) Mainboard **BNC Nut** Tank Body

Disassemble and Assemble the Mainboard

Figure 5-7 Disassemble and assemble the mainboard

Parts Explanations:

- (4) Bolts on the LA board ((M3*6 Pan head Torx recess composite machine screws): 2
- Ib Bolts on the cooling plate (M3*6 Pan head Torx recess composite machine screws):3
- (f) Bolts for fixing the mainboard (M3*6 Pan head Torx recess composite machine screws): 2
- ① Stud on the mainboard (M3*6 Copper pillar): 3
- 18 Nuts at BNC terminal (BNC nuts): 3
- (19) Spacer at BNC fracture (BNC lock spacer): 3

Delts at LA terminal (0.1*0.3inch Hexagon Bolt in British system): 2

Disassemble steps:

- 1. Backout the two bolts (1) from LA board using a TORX driver (T10);
- 2. Backout the three bolts (15) from the cooling plate using a TORX driver (T10);
- 3. Backout the two mainboard bolts () using a TORX driver (T10), and backout the three mainboard studs () using sleeve (D89); (Pay attention that one M3 spacer is existed between LA board and stud whose position is next to the L808.)
- 4. Backout the three bolts (18) using sleeve, and remove the three spacers (19);
- 5. Backout the two bolts 2 at LA terminal using a TORX (T10);
- 6. Disconnect the earth card on the metal shell from the shore at the USB interface of the mainboard using an electric iron. (Note: please set the temperature of iron as 310° C)
- 7. Take out the mainboard gently after check.

Chapter 6 Troubleshooting

1. After the oscilloscopes is powered on, the screen remains dark (no display):

- (1) Check the power cable connection.
- (2) Ensure the power switch has been turned on.
- (3) After above inspection, restart the oscilloscope.
- (4) If the problem still remains, please ask **RIGOL** for help.

2. After the signal acquisition the waveform does not appear:

- (1) Check if the probe is connecting with the signals.
- (2) Check if the probe is connecting to the channels firmly.
- (3) Check if the probe is connecting with the object being tested.
- (4) Check if any signal generated from testing point.
- (5) Repeat the acquisition.

3. The measurement result is **10** times higher or lower than the value expected.

Check if the probe attenuation corresponds with the channel attenuation.

4. If the oscilloscope does not get a stable waveform display:

- (1) Check the **Source** and notice if it is set to the channel in use.
- (2) Check the **Mode**. Use **Edge** for normal signals, and use **Video** for VIDEO signals.
- (3) Switch the **Coupling** into **HF Rejection** or **LF Rejection** in order to filter the noise which disturbs trigger.
- (4) Adjust the trigger **Sensitivity** and the **Holdoff** time.

5. After pressing RUN/STOP, the oscilloscope does not display any waveform on screen.

Check whether the **Sweep** is set to **Normal** or **Single** and see whether the trigger level is out of the signal range. If it is, set the trigger level in proper range by turning the OLEVEL knob or pressing the 50% button. Or set the **Mode** as **AUTO**. Moreover, push AUTO button to display the waveform on screen.

6. After the Acquisition was set to "Averages" or Display Persistence is set ON, the waveform refreshes slowly.

Normal phenomenon.

7. The waveform is displayed on the appearance of ladder.

(1) Normal phenomenon. Maybe the time base setting maybe is too slow. Please

rotate the horizontal OSCALE knob to increase horizontal resolution to improve the display.

(2) Maybe the display **Type** is set to **Vectors** set it to **Dots** mode to improve the display.

Chapter 7 Replaceable Parts

RIGOL provides some replaceable parts in order to maintain or update for users. Please see as the following figure and table. Note that the numbers in the figure and the table are associated with each other.

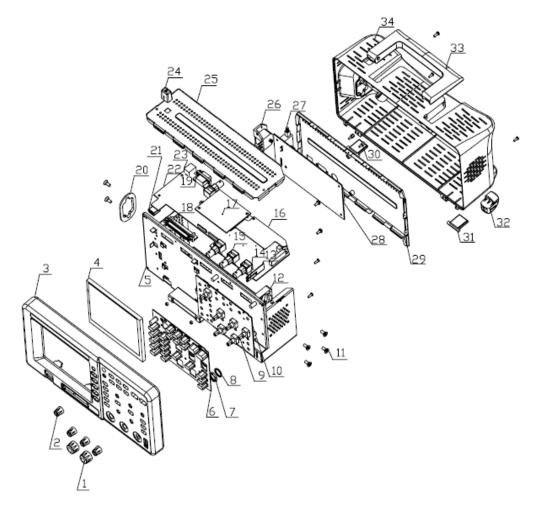


Figure 7-1 DS1000E, DS1000D Exploded View

Table 7-1 Replaceable parts list

No.	Name	Specification
1	Big Knob	
2	Small Knob	
3	Panel	

4	LCD	Color Screen: FG050600ANNNA-01
5	Metallic Tank Body	
6	Rubber Button	
7	BNC Nut	BNC Nut
8	BNC Lock Spacer	BNC Lock Spacer
9	Encoder	
10	Keyboard	
11	Bolt	0.1*0.3inch Hexagon Bolt, British system
12	Fan	ÁFB0612LC-714
13	Large Terminal	
14	Small Terminal	
15	BNC	
16	Cooling Plate	Aluminum
17	LA Board	
18	LA Interface	
19	RS-232 Interface	
20	Power Jacket	
21	USB Host Interface	
22	Mainboard	RDSB1003
23	USB Device Interface	
24	Power Switch Cap	
25	Upper Metallic Cover	
26	Power Interface	
27	Power Supply	
28	Power Board	RDSB1001
29	Rear Metallic Cover	
30	Female ScrewLock	M3*7/ DB9 bolt, British system
31	Front Trestle	
32	Rear Trestle	
33	Handle	
34	Cover	

Chapter 8 Service & Support

This chapter contains the following topics:

- Warranty
- Care and Cleaning
- Contact Us

Warranty

RIGOL warrants that its products mainframe and accessories will be free from defects in materials and workmanship within the warranty period. If a product proves defective within the respective period, **RIGOL** guarantees the free replacement or repair of products which are approved defective.

To get repair service or obtain a copy of the whole warranty statement, please contact with your nearest **RIGOL** sales and service office.

RIGOL does not provide any other warranty items except the one being provided by this summary and the warranty statement. The warranty items include but not being subjected to the hint guarantee items related to tradable characteristic and any particular purpose.

RIGOL will not take any responsibility in cases regarding to indirect, particular and ensuing damage.

Care and Cleaning

General Maintenance

Do not store or leave the instrument in where the instrument will be exposed to direct sunlight for long periods of time.

Caution

To avoid damages to the instrument or probes, do not expose them to liquids which have causticity.

Cleaning

Clean the instrument and probes often based on its operating conditions require. To clean the exterior surface, perform the following steps:

- 1. Disconnect the instrument from all power sources.
- **2.** Clean the loose dust on the outside of the instrument and probes with a lint- free cloth (with a mild detergent and water). When clean the LCD, take care to avoid scarifying it.

WARNING

To avoid injury resulting from short circuit, make sure the instrument is completely dry before reconnecting into a power source.

Contact Us

If you have any problem or requirement during using our products, please contact **RIGOL** Technologies, Inc. or the local distributors.

Domestic: Please call Tel: (86-10) 8070 6688 Fax: (86-10) 8070 5070

Service & Support Hotline: 800 810 0002

9:00 am -5: 00 pm from Monday to Friday

Or by e-mail: service@rigol.com

Or mail to: **RIGOL** Technologies, Inc. 156# CaiHe Village, ShaHe Town, ChangPing District, Beijing, China Post Code: 102206

Overseas: Contact the local **RIGOL** distributors or sales office. For the latest product information and service, visit our website: <u>www.rigolna.com</u>

Index

Acquisition		
Big Knob		
BNC		
BNC Lock Spacer	7-	-2
BNC Nut	7-	-2
Bolt	7-	-2
Calibration		
Calibration Interval	1-	-5
Care and Cleaning		
Cleaning		
Connect the Probes		
Contact Us		
Cooling Plate		
Cover 5-4,		
Digital Probes 2-1,		
Disassembly and Assembly		
Display	1-	-5
Display a Waveform Automatically.	2-	-9
Encoder	7-	-2
Environmental		
Exploded View	7-	-1
Fan		
Front trestle	7-	-2
General Inspection		
General Specifications	1-	-5
Handle	7-	-2
Horizontal		
Inputs		
IP Degree	1-	-5
Keyboard	7-	-2
LA board	7-	-2
LA interface	7-	-2
Large Terminal		
LCD		
LCD and the Keyboard		
Logic Analyzer Interface 3-1,	3-	-9

Mainboard	5-10, 7-2
Measurements	1-4
Mechanical	1-5
Metallic Case	7-2
Metallic Rear Cover	7-2
P/F Interface	3-1, 3-8
Panel	5-8, 7-1
Performance Test	3-1
Power	1-5
Power Board	7-2
Power Board and the Fan	5-6
Power interface	7-2
Power Jacket	7-2
Power Supply	
Power-On Inspection	2-3
Prepare for Use	
Probe Compensator	1-5
Probes Compensation	
Rear trestle	
Replaceable Parts	7-1
RS-232 Interface	3-1, 3-6
Rubber Button	
Small Knob	
Small Terminal	
Specifications	
Specifications Test	
Structure Chart	
Trigger	
Troubleshooting	
Upper and Rear Covers	
Upper Metallic Cover	
USB Device Interface	
USB Host Interface	
Vertical	
Warranty	8-2